Time: 3 Hours

November 6, 2013

[1]

Maximum marks you can get is 50. This paper carries 54 marks.

1. (a) Let $f, h : \mathbb{R}^3 \longrightarrow \mathbb{R}$ be \mathcal{C}^1 functions. Let V be the convex closed tetrahedron of R^3 with vertices 0 = (0, 0, 0), A = (a, 0, 0), B = (0, b, 0) and C = (0, 0, c)where a > 0, b > 0, c > 0. Let $F = (f, 0, 0) \underline{Or}(0, 0, h)$. Let S be the boundary of V, with outward normal orientation n. Show that $\iint_S F = \iint_V div F$. \sim [6]

(b) Let
$$h : \mathbb{R}^3 \longrightarrow \mathbb{R}$$
 be any \mathcal{C}^1 function. Let S be any bounded smooth surface
in \mathbb{R}^3 with \underline{n} , unit normal \mathcal{C}^1 family for S . Let $\underline{F} = h\underline{n}$ on S . Define $\iint_{(S,\underline{n})} h =$
$$\iint_{S} h\underline{n}$$
. Let ψ represent S i.e., G is an open set in $\mathbb{R}^2, \psi : G \longrightarrow \mathbb{R}^3$ is \mathcal{C}^1, ψ
is $1-1$ and $\psi(G) = S$. Show that $\iint_{(S,\underline{n})} \int h = \iint_{G} \int h(\psi(u,v)) || \psi \times \psi || du dv$
[1]

- (c) Let $f, g: \mathbb{R}^3 \longrightarrow \mathbb{R}$ be \mathcal{C}^2 functions. Let V, S, n be as in previous parts. Define $h: R^3 \longrightarrow R$ by $h = f \frac{\partial g}{\partial n} - g \frac{\partial f}{\partial n}$. Let Δ be the Laplacian on R^3 given by $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$. Show that $\iint_{(S,\underline{n})} h = \iiint_V (f \Delta g - g \Delta f)$. [10]
- 2. (a) Two \mathcal{C}^2 functions $u, v : \Omega \longrightarrow R$, where Ω an open set in R^2 are said to be harmonic conjugates if $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$. Let C be any circle given by $C = \{(x-a)^2 + (y-b)^2 = r^2\}$. Assume that $\{(x-a)^2 + (y-b)^2 \le r^2\} \subset \Omega$. Show that $\int_C u dx - v dy = 0 = \int_C v dx + u dy$ [2]
 - (b) Let $f, g: R^2 \longrightarrow R$ be given by $f(x, y) = e^x \cos y, g(x, y) = e^x \sin y$ with C as in part (a), find $\int_C f dx g dy$ and $\int_C g dx + f dy$ [2]
 - (c) Let $P, Q: R^2 \{(0,0)\} \longrightarrow R$ be given by $P(x,y) = \frac{-y}{x^2+y^2}, Q(x,y) = \frac{x}{x^2+y^2}$ Show that
 - (i) $\int_{x^2+y^2=1} Pdx + Qdy \neq 0$ [1]
 - (ii) Show that $\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} = 0$ on $R^2 \{(0,0)\}$

(iii) Is there a contradiction between Greens theorem and (i)+(ii)?. Justify your answer. [2]

3. Let $F(x, y, z) = (y^2, xy, xz)$. Let S be the portion of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ above the plane $z = \frac{c}{2}$. Here a > 0, b > 0, c > 0. Find $\iint_S \operatorname{curl} F$. [4] 4. Calculate $\iint_{H} e^{x+y} dx dy$

where H is the parallelogram with vertices at (1, 1), (3, 2), (4, 5), (2, 4) [5]

5. Let $n > 2, a_1 > 0, a_2 > 0, \dots a_n > 0$. Let

$$S(a_1, a_2, \cdots a_n) = \{ (y_1, y_2, \cdots y_n) : |\frac{y_i}{a_i}| + |\frac{y_n}{a_n}| \le 1 \text{ for each } i = 1, 2, \cdots n - 1 \}$$

[5]

[2]

Calculate $\int_{S(a_1, a_2, \dots a_n)} dy$

- 6. (a) Let $f_1, f_2, \dots, f_n, \dots$ be a sequence of real valued \mathcal{C}^1 functions on [a, b]. Let $h, g: [a, b] \longrightarrow R$ be continuous functions. If $f_n \longrightarrow g$ and $f'_n \longrightarrow h$ uniformly on [a, b], then show that g is differentiable and g' = h. [3]
 - (b) Let $f(t,x) = \sum_{n=1}^{\infty} a_n e^{-nt} \sin(nx)$ for t > 0, x in R. Here a_1, a_2, \cdots is a bounded sequence of real numbers. Formally you can verify that

$$\frac{\partial^2 f}{\partial t^2} (t, x) = -\frac{\partial^2}{\partial x^2} f(t, x)$$

Prove it rigorously by stating a theorem similar to Weirstrass M-test. [7]

- 7. (a) State implicit function theorem.
 - (b) Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be given by $f(x, y) = x^2 + y^2$ and $C = \{f = 1\}$. Clearly $(1, 0) \in C$. Show that there does not exist $\delta > 0$ and a \mathcal{C}^1 function $g : (1-\delta, 1+\delta) \longrightarrow \mathbb{R}$ such that $g(1) = 0, (x, g(x)) \in C$ for all x in $(1 \delta, 1 + \delta)$. [2]
 - (c) Is there a contradiction between (a) and (b)?. Justify your answer. [1]